
• We feed the machine the following program:

loop:

flw f1, -4(t0)

fmul.s f2, f1, f0

fsw f2, -4(t0)

addi t0, t0, -4

bnez t0, loop

fmul.s f3,f2,f4 #just filling

fsub.s f5,f1,f2

fdiv.s f0,f3,f1

fadd.s f1,f5,f2

• loads and stores take 2 cycles
• float muls/divs take 4 cycles
• float adds/subs take 3 cycles
• integer operations take 2 cycles

• The branch predictor is correct at the first bnez
instruction and takes the loop.

• The second time it finds the bnez, it predicts
jump and is wrong, the ROB needs to be flushed.

The loop performs a float vector multiplication by a scalar in F0

Cycle 0 Inst. Queue.

Reorder Buffer

Registers

Load Buffer Reservation Station (FP) Reservation Station (Int)

Common Data Bus

flw f1, -4(t0)

bnez t0, loop

addi t0, t0, -4

fsw f2, -4(t0)

fmul.s f2, f1, f0

flw f1, -4(t0)

0

1

2

3

4

5

F0 10

F1 0 ROB0

F2 0

T0 8

FP ALU Int ALUMemory Unitstores

loads

inst.

commit
Op.+ROB#

operands

results

Cycle 1
The first load is sent through the
pipeline to the Load buffer and the
ROB.

Inst. Queue.

Reorder Buffer

Registers

Load Buffer Reservation Station (FP) Reservation Station (Int)

Common Data Bus

4 ROB0

fmul.s f2, f1, f0

flw f1, -4(t0)

bnez t0, loop

addi t0, t0, -4

fsw f2, -4(t0)

fmul.s f2, f1, f0

0 FLW F1

1

2

3

4

5

F0 10

F1 0 ROB0

F2 0

T0 8

FP ALU Int ALUMemory Unit

loads

inst.

commit
Op.+ROB#

operands

results
stores

flw f1, -4(t0)

flw f1, -4(t0)

Cycle 2
The first load is sent to the Memory
Unit and its result will be available in
the next cycle.

Meanwhile, the first FMUL is sent to
the ROB and the first available RS
where it will wait for its operands
(F1/ROB0)

Inst. Queue.

Reorder Buffer

Registers

Load Buffer Reservation Station (FP) Reservation Station (Int)

Common Data Bus

FMUL ROB0 10 ROB1

fsw f2, -4(t0)

fmul.s f2, f1, f0

flw f1, -4(t0)

bnez t0, loop

addi t0, t0, -4

fsw f2, -4(t0)

0 FLW F1

1 FMUL F2

2

3

4

5

F0 10

F1 0 ROB0

F2 0 ROB1

T0 8

FP ALU Int ALUMemory Unit

loads

inst.

commit
Op.+ROB#

operands

results
stores

fmul.s f2, f1, f0

fmul.s f2, f1, f0

flw f1, -4(t0)

Cycle 3
The result of the first load is sent from
the MU to the CDB, where it will be
copied to the ROB and the RS waiting
for it.

Inst. Queue.

Reorder Buffer

Registers

Load Buffer Reservation Station (FP) Reservation Station (Int)

Common Data Bus

FMUL 1 10 ROB1

fsw f2, -4(t0)

fmul.s f2, f1, f0

flw f1, -4(t0)

bnez t0, loop

addi t0, t0, -4

fsw f2, -4(t0)

0 FLW F1 1

1 FMUL F2

2

3

4

5

F0 10

F1 0 ROB0

F2 0 ROB1

T0 8

FP ALU Int ALUMemory Unit

loads

inst.

commit
Op.+ROB#

operands

results
stores

flw f1, -4(t0)

Cycle 3
Still in cycle 3, the first store op is sent
to the ROB where it will wait for
F2/ROB1. This way, the ROB acts as a
store buffer.

Inst. Queue.

Reorder Buffer

Registers

Load Buffer Reservation Station (FP) Reservation Station (Int)

Common Data Bus

FMUL 1 10 ROB1

addi t0, t0, -4

fsw f2, -4(t0)

fmul.s f2, f1, f0

flw f1, -4(t0)

bnez t0, loop

addi t0, t0, -4

0 FLW F1 1

1 FMUL F2

2 FSW Mem[4] F2/ROB1

3

4

5

F0 10

F1 0 ROB0

F2 0 ROB1

T0 8

FP ALU Int ALUMemory Unit

loads

inst.

commit
Op.+ROB#

operands

results
stores

fsw f2, -4(t0)

Cycle 4
The first load (FLW) commits to the
register file (F1).

Meanwhile the first FMUL is sent to
the FP ALU because it now has all
operands.

The first ADDI is sent to the RS and the
ROB.

Inst. Queue.

Reorder Buffer

Registers

Load Buffer Reservation Station (FP) Reservation Station (Int)

Common Data Bus

bnez t0, loop

addi t0, t0, -4

fsw f2, -4(t0)

fmul.s f2, f1, f0

flw f1, -4(t0)

bnez t0, loop

1 FMUL F2

2 FSW Mem[4] F2/ROB1

3 ADDI T0

4

5

0

F0 10

F1 1

F2 0 ROB1

T0 8 ROB3ADDI 8 -4 ROB3

FP ALU Int ALUMemory Unit

loads

inst.

commit
Op.+ROB#

operands

results
stores

addi t0, t0, -4

fmul.s f2, f1, f0

addi t0, t0, -4

Cycle 5
The branch (BNEZ) is sent
to the ROB and the RS where it will
wait for its operands (T0/ROB3).

The ADDI instruction is sent to the Int
ALU because it has all operands.

Inst. Queue.

Reorder Buffer

Registers

Load Buffer Reservation Station (FP) Reservation Station (Int)

Common Data Bus

flw f1, -4(t0)

bnez t0, loop

addi t0, t0, -4

fsw f2, -4(t0)

fmul.s f2, f1, f0

flw f1, -4(t0)

1 FMUL F2

2 FSW Mem[4] F2/ROB1

3 ADDI T0

4 BNEZ ?

5

0

F0 10

F1 1

F2 0 ROB1

T0 8 ROB3BNEZ ROB3 - ROB4

FP ALU Int ALUMemory Unit

loads

inst.

commit
Op.+ROB#

operands

results
stores

bnez t0, loop

bnez t0, loop

addi t0, t0, -4

Cycle 6
The second load (FLW) is sent to the
ROB and the Load Buffer where it will
wait for ROB3/T0.

The result of the ADDI instruction is
broadcast through the CDB to the ROB
and RS waiting for it.

Inst. Queue.

Reorder Buffer

Registers

Load Buffer Reservation Station (FP) Reservation Station (Int)

Common Data Bus

ROB3 ROB5

fmul.s f2, f1, f0

flw f1, -4(t0)

bnez t0, loop

addi t0, t0, -4

fsw f2, -4(t0)

fmul.s f2, f1, f0

1 FMUL F2

2 FSW Mem[4] F2/ROB1

3 ADDI T0 4

4 BNEZ ?

5 FLW F1

0

F0 10

F1 1 ROB5

F2 0 ROB1

T0 8 ROB3BNEZ 4 - ROB4

FP ALU Int ALUMemory Unit

loads

inst.

commit
Op.+ROB#

operands

results
stores

flw f1, -4(t0)

flw f1, -4(t0)

addi t0, t0, -4

Cycle 7
The load FLW/ROB5 gets operand
ROB3/T0 from the ROB.

The 2nd FMUL is sent to the RS and
the ROB.

Note how registers file for F2 now
points to ROB0.

Inst. Queue.

Reorder Buffer

Registers

Load Buffer Reservation Station (FP) Reservation Station (Int)

Common Data Bus

0 ROB5 FMUL ROB5 10 ROB0

fsw f2, -4(t0)

fmul.s f2, f1, f0

flw f1, -4(t0)

bnez t0, loop

addi t0, t0, -4

fsw f2, -4(t0)

1 FMUL F2

2 FSW Mem[4] F2/ROB1

3 ADDI T0 4

4 BNEZ ?

5 FLW F1

0 FMUL F2

F0 10

F1 1 ROB5

F2 0 ROB0

T0 8 ROB3BNEZ 4 - ROB4

FP ALU Int ALUMemory Unit

loads

inst.

commit
Op.+ROB#

operands

results
stores

fmul.s f2, f1, f0

fmul.s f2, f1, f0

Cycle 7
Still in cycle 7, the ROB gets the result
of the first FMUL operation (10). The
first FSW (store) was waiting for it.

The BNEZ instruction is sent to the
ALU.

Inst. Queue.

Reorder Buffer

Registers

Load Buffer Reservation Station (FP) Reservation Station (Int)

Common Data Bus

0 ROB5 FMUL ROB5 10 ROB0

fsw f2, -4(t0)

fmul.s f2, f1, f0

flw f1, -4(t0)

bnez t0, loop

addi t0, t0, -4

fsw f2, -4(t0)

1 FMUL F2 10

2 FSW Mem[4] 10

3 ADDI T0 4

4 BNEZ ?

5 FLW F1

0 FMUL F2

F0 10

F1 1 ROB5

F2 0 ROB0

T0 8 ROB3

FP ALU Int ALUMemory Unit

loads

inst.

commit
Op.+ROB#

operands

results
stores

fmul.s f2, f1, f0

bnez t0, loop

Cycle 8
The second FSW can't enter the
pipeline because the ROB is full.

The 2nd load is sent to the MU.

The first 3 instructions of the ROB
commit to the register file AND
memory (FSW).

The first BNEZ gets its result:
prediction correct. No need to flush
the ROB.

Inst. Queue.

Reorder Buffer

Registers

Load Buffer Reservation Station (FP) Reservation Station (Int)

Common Data Bus

FMUL ROB5 10 ROB0

fsw f2, -4(t0)

fmul.s f2, f1, f0

flw f1, -4(t0)

bnez t0, loop

addi t0, t0, -4

fsw f2, -4(t0)

4 BNEZ CORRECT

5 FLW F1

0 FMUL F2

1

2

3

F0 10

F1 1 ROB5

F2 10 ROB0

T0 4

FP ALU Int ALUMemory Unit

loads

inst.

commit
Op.+ROB#

operands

resultsstores
bnez t0, loop

flw f1, -4(t0)

Cycle 9
We get the result of the second load,
FLW (2). Both the ROB and the RS
waiting for it.

Since the first BNEZ branch prediction
was correct, we clear it silently from
the ROB.

The second store, FSW, enters the
ROB.

Inst. Queue.

Reorder Buffer

Registers

Load Buffer Reservation Station (FP) Reservation Station (Int)

Common Data Bus

FMUL 2 10 ROB0

addi t0, t0, -4

fsw f2, -4(t0)

fmul.s f2, f1, f0

flw f1, -4(t0)

bnez t0, loop

addi t0, t0, -4

5 FLW F1 2

0 FMUL F2

1 FSW Mem[0] F2/ROB0

2

3

4

F0 10

F1 1 ROB5

F2 10 ROB0

T0 4

FP ALU Int ALUMemory Unit

loads

inst.

commit
Op.+ROB#

operands

results
stores

fsw f2, -4(t0)

flw f1, -4(t0)

Cycle 10
The second ADDI enters the ROB and
the RS.

The second load (FLW) commits. Its
value is written to the registers (2).

The second FMUL goes to the FP ALU
because it now has all operands.

Inst. Queue.

Reorder Buffer

Registers

Load Buffer Reservation Station (FP) Reservation Station (Int)

Common Data Bus

bnez t0, loop

addi t0, t0, -4

fsw f2, -4(t0)

fmul.s f2, f1, f0

flw f1, -4(t0)

bnez t0, loop

0 FMUL F2

1 FSW Mem[0] F2/ROB0

2 ADDI T0

3

4

5

F0 10

F1 2

F2 10 ROB0

T0 4 ROB2ADDI 4 -4 ROB2

FP ALU Int ALUMemory Unit

loads

inst.

commit
Op.+ROB#

operands

results
stores

addi t0, t0, -4

addi t0, t0, -4

fmul.s f2, f1, f0

Cycle 11
The second ADDI is sent to the ALU.

The second BNEZ enters the ROB and
RS.

Inst. Queue.

Reorder Buffer

Registers

Load Buffer Reservation Station (FP) Reservation Station (Int)

Common Data Bus

flw f1, -4(t0)

bnez t0, loop

addi t0, t0, -4

fsw f2, -4(t0)

fmul.s f2, f1, f0

flw f1, -4(t0)

0 FMUL F2

1 FSW Mem[0] F2/ROB0

2 ADDI T0

3 BNEZ ?

4

5

F0 10

F1 2

F2 10 ROB0

T0 4 ROB2BNEZ ROB2 - ROB3

FP ALU Int ALUMemory Unit

loads

inst.

commit
Op.+ROB#

operands

results
stores

bnez t0, loop

bnez t0, loop

addi t0, t0, -4

Cycle 12
The result of the second ADDI is sent
through the CDB to the ROB and the
RS waiting for it.

The third load, FLW, enters the ROB
and the LB where it will wait for
T0/ROB2.

Inst. Queue.

Reorder Buffer

Registers

Load Buffer Reservation Station (FP) Reservation Station (Int)

Common Data Bus

ROB2 ROB4

fmul.s f2, f1, f0

flw f1, -4(t0)

bnez t0, loop

addi t0, t0, -4

fsw f2, -4(t0)

fmul.s f2, f1, f0

0 FMUL F2

1 FSW Mem[0] F2/ROB0

2 ADDI T0 0

3 BNEZ ?

4 FLW F1

5

F0 10

F1 2 ROB4

F2 10 ROB0

T0 4 ROB2BNEZ 0 - ROB3

FP ALU Int ALUMemory Unit

loads

inst.

commit
Op.+ROB#

operands

results
stores

flw f1, -4(t0)

flw f1, -4(t0)

addi t0, t0, -4

Cycle 13
The result of the second FMUL is sent
through the CDB to the ROB and RS.

The third load (FLW) gets its operand
T0/ROB2 from the ROB.

The BNEZ is sent to the ALU since it
now has all its operands.

Inst. Queue.

Reorder Buffer

Registers

Load Buffer Reservation Station (FP) Reservation Station (Int)

Common Data Bus

-4 ROB4 FMUL ROB4 2 ROB5

fsw f2, -4(t0)

fmul.s f2, f1, f0

flw f1, -4(t0)

bnez t0, loop

addi t0, t0, -4

fsw f2, -4(t0)

0 FMUL F2 20

1 FSW Mem[0] 20

2 ADDI T0 0

3 BNEZ ?

4 FLW F1

5 FMUL F2

F0 10

F1 2 ROB4

F2 10 ROB5

T0 4 ROB2

FP ALU Int ALUMemory Unit

loads

inst.

commit
Op.+ROB#

operands

results
stores

fmul.s f2, f1, f0

fmul.s f2, f1, f0

fmul.s f2, f1, f0

bnez t0, loop

Cycle 14
FSW doesn't enter the pipeline
because there is no space in the ROB.

The first 3 entries in the ROB commit
to the Register File and memory.

The third load is sent to the MU.

We get the results of the BNEZ
instruction from the ALU: prediction
incorrect.

Inst. Queue.

Reorder Buffer

Registers

Load Buffer Reservation Station (FP) Reservation Station (Int)

Common Data Bus

FMUL ROB4 2 ROB5

fsw f2, -4(t0)

fmul.s f2, f1, f0

flw f1, -4(t0)

bnez t0, loop

addi t0, t0, -4

fsw f2, -4(t0)

3 BNEZ INCORRE

4 FLW F1

5 FMUL F2

0

1

2

F0 10

F1 2 ROB4

F2 20 ROB5

T0 0

FP ALU Int ALUMemory Unit

loads

inst.

commit
Op.+ROB#

operands

resultsstores
bnez t0, loop

flw f1, -4(t0)

Cycle 15
The third BNEZ hits the ROB head and
the branch prediction was incorrect.
We need to clear all instructions after
the BNEZ from the pipeline and
resume the execution at the correct
point.

Inst. Queue.

Reorder Buffer

Registers

Load Buffer Reservation Station (FP) Reservation Station (Int)

Common Data Bus

FMUL ROB4 2 ROB5

fsw f2, -4(t0)

fmul.s f2, f1, f0

flw f1, -4(t0)

bnez t0, loop

addi t0, t0, -4

fsw f2, -4(t0)

3 BNEZ INCORRE

4 FLW F1

5 FMUL F2

0

1

2

F0 10

F1 2 ROB4

F2 20 ROB5

T0 0

FP ALU Int ALUMemory Unit

loads

inst.

commit
Op.+ROB#

operands

results
stores

Cycle 16
We resume the execution at the
correct point.

Inst. Queue.

Reorder Buffer

Registers

Load Buffer Reservation Station (FP) Reservation Station (Int)

Common Data Bus

fadd.s f1,f5,f2

fdiv.s f0,f3,f1

fsub.s f5,f1,f2

fmul.s f3,f2,f4

4

5

0

1

2

3

F0 10

F1 2

F2 20

T0 0

FP ALU Int ALUMemory Unit

loads

inst.

commit
Op.+ROB#

operands

results
stores

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

